Quantcast
Channel: Silver Bulletin
Viewing all articles
Browse latest Browse all 2634

Tetanus Shot: How Do We Know That It Works?

$
0
0

December 11, 2014

by Tetyana Obukhanych, PhD

(GreenMedInfo.com) Do we know how tetanus shots work? The medical establishment holds a view that a tetanus shot prevents tetanus, but how do we know this view is correct?

[Sponsor Links: Anti-Vaccine Protocol]

The cure for tetanus, a life-threatening and often deadly disease, has been sought from the very inception of the modern field of Immunology. The original horse anti-serum treatment of tetanus was developed in the late 19th century and introduced into clinical practice at the time when a bio-statistical concept of a randomized placebo-controlled trial (RCT) did not yet exist. The therapy was infamous for generating a serious adverse reaction called “serum sickness” attributed to the intolerance of humans to horse-derived serum. To make this tetanus therapy usable, it was imperative to substitute the animal origin of anti-serum with the human origin. But injecting a lethal toxin into human volunteers as substitutes for horses would have been unthinkable.

A practical solution was found in 1924: pre-treating the tetanus toxin with formaldehyde (a fixative chemical) made the toxin lose its ability to cause clinical tetanus symptoms. The formaldehyde-treated tetanus toxin is called the toxoid. The tetanus toxoid can be injected into human volunteers to produce a commercial human therapeutic product from their sera called tetanus immunoglobulin (TIG), a modern substitute of the original horse anti-serum. The tetanus toxoid has also become the vaccine against clinical tetanus.

The tetanus toxin, called tetanospasmin, is produced by numerous C. tetani bacterial strains. C. tetani normally live in animal intestines, notably in horses, without causing tetanus to their intestinal carriers. These bacteria require anaerobic (no oxygen) conditions to be active, whereas in the presence of oxygen they turn into resilient but inactive spores, which do not produce the toxin. It has been recognized that inactive tetanus spores are ubiquitous in the soil. Tetanus can result from the exposure to C. tetani via poorly managed tetanus-prone wounds or cuts, but not from oral ingestion of tetanus spores. Quite to the contrary, oral exposure to C. tetani has been found to build resistance to tetanus without carrying the risk of disease, as described in the section on “Natural Resistance to Tetanus.”

Once secreted by C. tetani germinating in a contaminated wound, tetanospasmin diffuses through the tissue’s interstitial fluids or bloodstream. Upon reaching nerve endings, it is adsorbed by the cell membrane of neurons and transported through nerve trunks into the central nervous system, where it inhibits the release of a neurotransmitter gamma-aminobutyric acid (GABA). This inhibition can result in various degrees of clinical tetanus symptoms: rigid muscular spasms, such as lockjaw, sardonic smile, and severe convulsions that frequently lead to bone fractures and death due to respiratory compromise.

Read more of this interesting article and please come back to Utopia Silver Supplements—>


Viewing all articles
Browse latest Browse all 2634

Trending Articles